An angle between two vectors $\theta$ is the angle from initial point of first vector to any point to where the second vector rotates from the common vertex.

If $\vec{A}$ and $\vec{B}$ are two given vectors where $\vec{A}$ = a1i + b1j + c1k and $\vec{B}$ = a2i + b2j + c2k then the angle between two vectors $\theta$ is given by

Angle between two vectors Calculator calculates the angle between two given vectors if the magnitudes of given vectors a1, b1, c1and a2, b2, c2 are entered in the blocks provided.

## How to find angle between two Vectors

Here are some steps to find the angle between two vectors
Step 1 : Read the given problem and observe whether vectors are of the form
A = a1 i + b1 j + c1 k
B = a2 i + b2 j + c2 k
Where a1, b1, c1 and a2, b2 and c2 are magnitudes of given components.

Step 2 : Find the value of dot product A.B given as
A.B = a1b1 + a2b2 + a3b3
The values of |A| and |B| as
|A| = $\sqrt{a_{1}^{2} + b_{1}^{2} + c_{1}^{2}}$
|B| = $\sqrt{a_{2}^{2} + b_{2}^{2} + c_{2}^{2}}$

Step 3 : Find the value of cos $\theta$ using formula
cos $\theta$ = $\frac{A.B}{|A|.|B|}$
and from this get the values of $\theta$ as
$\theta$ = cos-1 $\frac{A.B}{|A||B|}$.

### Vector Projection Calculator

 Cross Product of Two Vectors Dot Product of Two Vectors angle between two curves Calculating Angles What are Vectors Calculate Angle of Right Triangle
 Cross Product of Two Vectors Calculator Calculate Vector Adding Vectors Calculator Subtracting Vectors Calculator Unit Vector Calculator Online Vector Dot Product Calculator