Inverse of a function is something that inverses the given function to get y = f-1(x). The inverse of inverse function is the function itself. For a given function y = f(x) is such that f-1(f(x)) = x for all the values of x for function f defined.

Inverse function Calculator find the inverse of any given function with respect to the variable, if the function is entered in the block provided.
Here are some steps to solve the inverse function
Step 1 : Read the problem and note the given function y = f(x)
Step 2 : Solve the function x in terms of variable y.
Step 3 : Interchange the values x and y to get inverse function y = f-1(x).

Below are given some solved problems on inverse function which may be useful for you. 

Solved Examples

Question 1: Find the inverse function for the function f(x) = $\frac{x + 5}{x + 2}$
Solution:
 
Step 1: The Given function is y = $\frac{x + 5}{x + 2}$

Step 2: Solving for x
                                          y(x + 2) = (x + 5)
                                          xy + 2y = x + 5
                                          xy - x = 5 - 2y
                            x = $\frac{5 - 2y}{y - 1}$

Step 3: Interchanging the values of x and y, we get
                           y = $\frac{5 - 2x}{x - 1}$.

Inverse Function

 

Question 2: Find the inverse function for the function f(x) = 5x + 1.
Solution:
 
Step 1: The Given function is y = 5x + 1

Step 2:
Solving for x we get
                                          5x = y - 1
                                          x = $\frac{y - 1}{5}$

Step 3:
Interchanging the values of x and y, we get the inverse function
                                          y = $\frac{x - 1}{5}$.
Inverse Functions