Trigonometric Identity is a study of identities that involve trigonometric functions. An "identity" is an equation of one or more variables that holds true for all values. These identities involves some functions of one or more angles.

There are many fundamental identities like Reciprocal Identities, Ratio Identities, Opposite angle Identities, Pythagorean Identities, Cofunction Identities, Sum and Difference Identities, Double angle Identities, Product to Sum Identities, Sum to Product Identities etc.

This calculator is only concentrating on product to sum identities and sum to product identities.

## Trigonometric Identities

Below you can see identities                                      Product to Sum Identities:

$$sin A sin B = \frac{1}{2}(cos(A - B) - cos(A + B))$$
$$cos A cos B = \frac{1}{2}(cos(A - B) + cos(A + B))$$
$$sin A cos B = \frac{1}{2}(sin(A + B) + sin(A - B))$$
$$cos A sin B = \frac{1}{2}(sin(A + B) - sin(A - B))$$
Sum to Product Identities:

$$sin A + sin B = 2sin\left ( \frac{A + B}{2} \right )cos\left ( \frac{A - B}{2} \right )$$
$$sin A - sin B = 2cos\left ( \frac{A + B}{2} \right )sin\left ( \frac{A - B}{2} \right )$$
$$cos A + cos B = 2cos\left ( \frac{A + B}{2} \right )cos\left ( \frac{A - B}{2} \right )$$
$$cos A - cos B = 2sin\left ( \frac{A + B}{2} \right )sin\left ( \frac{A - B}{2} \right )$$

### Trigonometric Ratios Calculator

 Pythagorean Trigonometric Identities Trigonometric Functions and Identities Trigonometric Identities Unit Circle Trigonometric Pythagorean Identities Solving Trigonometric Equations Using Identities Hyperbolic Identities
 Trigonometric Function Solver Algebra Solver Angle Solver Area Solver Asymptote Solver Calculus Solver