Trigonometric ratio tells us how sides and angles related to each other. we know that there are three sides in a right angled triangle
  • Base (adjacent side)
  • Perpendicular side (opposite side)
  • Hypotenuse
There are six ways to get the trigonometric ratios out of three sides of triangle.If the hypotenuse is called as hyp, opposite side as opp and adjacent side as adj.
 Trigonometric Function   Ratio 
 sin $\theta$  opp/hyp 
 cos $\theta$  adj/hyp
 tan $\theta$  opp/adj
 cosec $\theta$  hyp/opp
 sec $\theta$  hyp/adj
 cot $\theta$   adj/hyp

Trigonometric Ratios Calculator is a online tool to calculate the value of sin $\theta$, cos $\theta$, tan $\theta$, cosec $\theta$, sec $\theta$, cot $\theta$. You just have to enter the side lengths in the block provided and get the trigonometric ratios instantly.
Lets see how to find trigonometric ratios using steps:
Step 1 : Read the problem and check whether all the side lengths in the triangle are given and note it down.

Step 2 : To find the trigonometric ratios use the formulas given below
sin $\theta$ = $\frac{Perpendicular\ side}{Hypotenuse}$
cos $\theta$ = $\frac{Base}{Hypotenuse}$
tan $\theta$ = $\frac{Perpendicular\ side}{Base}$
cosec $\theta$ = $\frac{Hypotenuse}{Perpendicular\ side}$
sec $\theta$ = $\frac{Hypotenuse}{Base\ side}$
cot $\theta$ = $\frac{Base\ side}{Perpendicular\ side}$

If base is the adjacent side, perpendicular the opposite side and hypotenuse is the named as it is in a triangle then
sin $\theta$ = $\frac{opposite}{hypotenuse}$
cos $\theta$ = $\frac{adjacent}{hypotenuse}$
tan $\theta$ = $\frac{opposite}{adjacent}$
cosec $\theta$ = $\frac{hypotenuse}{opposite}$
sec $\theta$ = $\frac{hypotenuse}{adjacent}$
cot $\theta$ = $\frac{adjacent}{opposite}$
Substitute the side lengths in the above formula and get the desired trigonometric ratio angles.